Research Article

Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals

Table 4

The calssification results of the proposed MDFLN based on two public datasets.

DatasetPIDBase networkFine-tuning network
AccuracySpecificitySensitivityAUCAccuracySpecificitySensitivityAUC

CHB-MIT199.7699.52100100100100100100
299.0698.7599.3898.63100100100100
395.7193.8297.697.0198.5297.3199.7397.74
494.3491.7296.9799.1397.1196.1498.0899.11
594.8891.4298.3398.7997.4996.6698.3399.82
691.5698.2684.8694.4297.7597.2798.2299.17
798.2399.3797.198.5497.9199.0596.7898.67
897.789798.5599.6597.669798.3399.61
998.6597.6999.6299.2298.4697.3199.6299.37
1099.1599.0499.2899.2396.996.996.999.03
1196.1493.898.4890.6998.0497.9898.195.8
1296.696.4896.7299.4998.5398.9898.0799.75
1398.3898.2598.599.8899.1399.598.7599.85
1496.3797.894.9597.1299.2798.54100100
1796.898.5895.0398.9296.6299.6493.5997.03
1897.7995.9199.6699.7699.1599.6698.6499.79
1996.494.5998.2194.8996.1894.1598.2295.51
2098.2997.7298.8799.7496.493.9698.8599.82
219796.297.8197.9996.4393.9698.994.6
2296.6694.8698.4610099.7499.49100100
239896.7499.2599.9298.9999.2498.7499.7
2498.2298.449899.7397.7798.2197.3299.27
Average97.0896.6397.5398.3198.0997.7798.4298.8

BonnCase 198.3299.0395.3699.1498.498.7197.0299.07
Case 292.9194.4689.3693.1294.8489.68
Case 389.7693.674.491.2894.5578.2