Research Article
Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals
Table 5
Comparisons with state-of-the-art seizure detection methods using the same dataset.
| Authors | Methodology | Dataset | Sensitivity(%)–specificity(%)–accuracy(%) |
| Truong et al. [21] | STFT, CNN | CHB-MIT | 81.2–NR–NR | Tian et al. [22] | Deep multi-view feature learning, FFT, WPD, CNN | CHB-MIT | 96.7–99.1−98.3 | Li et al. [39] | Unified temporal-spectral squeeze-and-excitation network | CHB-MIT | 92.41–96.05−95.96 | | — | Bonn | NR–NR–99.8 | Peng et al. [40] | Stein kernel-based sparse representation | CHB-MIT | 97.85–98.57−98.21 | | — | Bonn | 98.43–98.67−98.67 | Deng et al. [41] | Transductive transfer learning fuzzy system | CHB-MIT | 97.16–97.03−97.15 | Hossain et al. [42] | Raw EEG as 2D Array, CNN | CHB-MIT | 90–91.65−98.05 | Shoeibi et al. [43] | Handcrafted features, SVM, KNN, CNN | Bonn | NR–NR–99.53 | Li and Chen [44] | FFT, 2D matrix, SVM | CHB-MIT | 98.28–98.5−98.47 | Jiang et al. [45] | Personal correlation coefficient and mutual information, SVM | CHB-MIT | 97.72–95.62−96.67 | Zhao et al. [46] | CNN, transformer | CHB-MIT | 97.70–97.6−98.76 | Thara et al. [47] | DNN, Different feature scaling techniques | Bonn | 98.59–91.47−97.21 | Xiong et al. [48] | Multivariate variational mode decomposition, RF | CHB-MIT | 98.24–97.83−97.39 | Ein Shoka et al. [25] | Transfer learning, CNN | CHB-MIT | 88.89–84.21−86.11 | Akyol [49] | Stacking ensemble approach, deep neural networks (DNN) | Bonn | 93.11–98.18−97.17 | Pan et al. [50] | Hybrid input, DWT, STFT, FFT, CNN | Bonn | NR–NR–97.89 | This work | Multi-view features, MDFLN | CHB-MIT | 98.42–97.77−98.09 | | — | Bonn | 97.02–98.71−98.4 |
|
|
The NR stands for not reported values.
|