Research Article

Automatic Seizure Detection Using Multi-Input Deep Feature Learning Networks for EEG Signals

Table 5

Comparisons with state-of-the-art seizure detection methods using the same dataset.

AuthorsMethodologyDatasetSensitivity(%)–specificity(%)–accuracy(%)

Truong et al. [21]STFT, CNNCHB-MIT81.2–NR–NR
Tian et al. [22]Deep multi-view feature learning, FFT, WPD, CNNCHB-MIT96.7–99.1−98.3
Li et al. [39]Unified temporal-spectral squeeze-and-excitation networkCHB-MIT92.41–96.05−95.96
BonnNR–NR–99.8
Peng et al. [40]Stein kernel-based sparse representationCHB-MIT97.85–98.57−98.21
Bonn98.43–98.67−98.67
Deng et al. [41]Transductive transfer learning fuzzy systemCHB-MIT97.16–97.03−97.15
Hossain et al. [42]Raw EEG as 2D Array, CNNCHB-MIT90–91.65−98.05
Shoeibi et al. [43]Handcrafted features, SVM, KNN, CNNBonnNR–NR–99.53
Li and Chen [44]FFT, 2D matrix, SVMCHB-MIT98.28–98.5−98.47
Jiang et al. [45]Personal correlation coefficient and mutual information, SVMCHB-MIT97.72–95.62−96.67
Zhao et al. [46]CNN, transformerCHB-MIT97.70–97.6−98.76
Thara et al. [47]DNN, Different feature scaling techniquesBonn98.59–91.47−97.21
Xiong et al. [48]Multivariate variational mode decomposition, RFCHB-MIT98.24–97.83−97.39
Ein Shoka et al. [25]Transfer learning, CNNCHB-MIT88.89–84.21−86.11
Akyol [49]Stacking ensemble approach, deep neural networks (DNN)Bonn93.11–98.18−97.17
Pan et al. [50]Hybrid input, DWT, STFT, FFT, CNNBonnNR–NR–97.89
This workMulti-view features, MDFLNCHB-MIT98.42–97.77−98.09
Bonn97.02–98.71−98.4

The NR stands for not reported values.