Research Article
Artificial Intelligence to Prevent Mobile Heart Failure Patients Decompensation in Real Time: Monitoring-Based Predictive Model
Table 1
Summary of decompensation detection studies.
| Study | Data type | Dataset | Method | Results |
| Zhang et al. [7] | Weight | 135 patients; 1964 days monitoring | RoT | Se = 58.3%, Sp = 54.1% | | | MACD | Se = 20.4%, Sp = 89.4% (AUC = 0.55%) |
| Gyllensten et al. [6] | Weight | 91 patients; 10 months | RoT | Se = 20%, Sp = 90% | MACD | Se = 33%, Sp = 91% | CUMSUM | Se = 13%, Sp = 91% | Noninvasive transthoracic bioimpedance | 91 patients; 10 months | RoT | Se = 13%, Sp = 91% | MACD | Se = 13%, Sp = 91% | CUMSUM | Se = 13%, Sp = 91% |
| Adamson et al. [10] | Blood pressure | 274 patients | CUMSUM | Se = 83.1%, FA = 4.1/pt-y |
| Abraham et al. [5] | Intrathoracic impedance | 156 patients; 537 ± 312 days | RoT | Se = 76.4%; FA = 1.9/pt-y | Weight | 156 patients; 537 ± 312 days | RoT | Se = 21%; FA = 4.3/pt-y |
| Ledwidge et al. [8] | Weight | 87 patients; 23.9 ± 12 weeks | RoT | Se = 21%; Sp = 86% | HeartPhone algorithm (based on MA) | Se = 82%; Sp = 68% |
| Gilliam et al. [11] | Multivariate | 201 patients | | Se = 41%; FA = 2/pt-y |
|
|