Mobile Information Systems / 2020 / Article / Tab 7 / Research Article
Feature Selection Using Genetic Algorithms for the Generation of a Recognition and Classification of Children Activities Model Using Environmental Sound Table 7 Accuracies by the generated model.
Number of features Feature selection method Classifier Accuracy 5 Genetic algorithm k-NN 0.89 5 Genetic algorithm NC 0.815 5 Genetic algorithm ANN 0.85 5 Genetic algorithm RF 0.92 5 Genetic algorithm Rpart 0.857 27 Akaike criterion k-NN 0.9425 27 Akaike criterion RF 0.9525 34 None k-NN 1.00 34 None RF 0.7637 5 Forward selection SVM 0.7944 5 Forward selection k-NN 0.8611 5 Forward selection RF 0.8917 5 Forward selection Gradient boosting 0.8710 5 Backward elimination SVM 0.8079 5 Backward elimination k-NN 0.8545 5 Backward elimination RF 0.8946 5 Backward elimination Gradient boosting 0.8797 30 Forward selection SVM 0.8867 Backward elimination 30 Forward selection k-NN 0.9075 Backward elimination 30 Forward selection RF 0.9208 Backward elimination 30 Forward selection Gradient boosting 0.9228 Backward elimination