Research Article

Development of Hepatitis Disease Detection System by Exploiting Sparsity in Linear Support Vector Machine to Improve Strength of AdaBoost Ensemble Model

Table 4

Comparison of the proposed method with some well-known methods proposed for hepatitis disease in terms of prediction accuracy [25, 28, 38, 39].

Model or method numberModel or methodStudy or authorsAcc. (%)

1K-nearest neighbours (KNN)Nilashi et al.71.41
2Neural networkNilashi et al.78.31
3ANaFISNilashi et al.79.67
4SVMNilashi et al.81.17
5ASIStern and Dobnikar82.0
6Multilayer perceptron + backpropagationAdamczak77.4
7Linear discriminant analysis (LDA)Stern and Dobnikar86.4
8Multilayer perceptron (MLP)Ozyildirim, yildirim74.37
9Radial basis function (Tooldiag)Adamczak79.0
101NNStern and Dobnikar85.3
11Radial basis function (RBF)Ozyildirim, yildirim83.75
1215NN, stand. EuclideanGrudzinski89.0
13FSM with rotationsAdamczak89.7
14FSM without rotationsAdamczak88.5
15Multilayer perceptron with backpropagationStern and Dobnikar82.1
16Quadratic discriminant analysisStern and Dobnikar85.8
17(NB and semi-NB), i.e., Naive Bayes and semi-NBStern and Dobnikar86.3
18Fisher discriminant analysis (FDA)Stern and Dobnikar84.5
19LVQStern and Dobnikar83.2
20GRNNOzyildirim, yildirim80.0
21ASRStern and Dobnikar85.0
22IncNetNorbert jankowski86.0
23Classification and regression tree (decision tree)Stern and Dobnikar82.7
24LFCStern and Dobnikar81.9
25-SVM-AdaBoostThe proposed method89.36