Research Article

An Improved RANSAC Algorithm Based on Adaptive Threshold for Indoor Positioning

Algorithm 3

Indoor positioning method based on adaptive threshold RANSAC.
   INPUT: imageL, imageR, F, K1, K2
(1) Matrix_E = K1’FK2;
(2) Vector_t, Matrix_R = recover (Matrix_E);
(3) Vector_Keypoints, Mathes = feature_extract_match (imageL, imageR)
(4)keypoints1 = detectore (imageL);
(5)keypoints2 = detectore (imageR);
(6)points1 = Pointchange (keypoints1);
(7)points2 = Pointchange (keypoints2);
(8)space_points = triangulation (keypoints1, keypoints2, Matches, Matrix_R, Vector_t)
(9)for i = 0 to matches.size do
(10)  points1_cam = pixel2cam (keypoints1);
(11)  points2_cam = pixel2cam (keypoints2);
(12)  points2_trans = Matrix_R (points[i].x, points[i].y, points[i].z) + Vector_t;
(13)end for
OUTPUT: location