Research Article
Stream Classification Algorithm Based on Decision Tree
Algorithm 1
Classification algorithm DVFDTc.
(1) | Win1 = S0/∗ Training set to build initial classification model ∗/ | (2) | M1 = BuildVFDT(Win1) | (3) | ClassValue = M1.Classify(Win1) | (4) | Winc = S0, ClassValue; | (5) | Mc = BuildVFDT(Winc) | (6) | For di = 1, …, n do | (7) | ClassValueoi = M1.Classify(di) | (8) | ClassValueci = Mc.Classify(di) | (9) | If(ClassValueoi = = ClassValueci) | (10) | WriteToLocal(ClassValueoi) | (11) | Wintmp.add(ClassValueoi) | (12) | Else | (13) | For j = 1, …, k do | (14) | Hj = Mix_Sample(Win1,Winc) | (15) | Mj = buildVFDT(Hj) | (16) | For j = 1, …, k do | (17) | Rhj = Mj.classify(di) | (18) | tmpR = Most_Appears(Rh) | (19) | WriteToLocal(tmpR) | (20) | If (i% Winc.size = = 0) | (21) | Win1 = Winc | (22) | Win2 = Wintmp | (23) | M1 = Mc | (24) | M2 = BuildVFDT(Winc) |
|