Research Article
Data Mining Technology Application in False Text Information Recognition
Table 4
Classification results for J48, SVM, NN, and Naïve Bayes.
| Classifier | Feature set | Accuracy (%) | Recall (%) | F-measure | ROC area | Growth rate (%) |
| J48 | FS1 | 85.74 | 85.70 | 0.857 | 0.904 | — | FS2 | 92.15 | 92.10 | 0.921 | 0.935 | 7.47 | FS3 | 91.94 | 91.90 | 0.919 | 0.926 | −0.22 | FS4 | 91.74 | 91.70 | 0.917 | 0.926 | −0.22 |
| SVM (SMO-RBF) | FS1 | 85.95 | 86.00 | 0.859 | 0.86 | — | FS2 | 93.60 | 93.60 | 0.936 | 0.936 | 8.96 | FS3 | 94.63 | 94.60 | 0.946 | 0.946 | 1.07 | FS4 | 95.04 | 95.00 | 0.95 | 0.95 | 0.42 |
| NN | FS1 | 87.60 | 87.60 | 0.876 | 0.952 | — | FS2 | 92.36 | 92.40 | 0.924 | 0.957 | 5.48 | FS3 | 94.21 | 94.20 | 0.942 | 0.979 | 1.95 | FS4 | 94.21 | 94.20 | 0.942 | 0.969 | 0 |
| Bayes | FS1 | 84.30 | 84.30 | 0.842 | 0.935 | — | FS2 | 86.78 | 86.80 | 0.867 | 0.953 | 2.97 | FS3 | 88.84 | 88.80 | 0.888 | 0.957 | 2.42 | FS4 | 88.84 | 88.80 | 0.888 | 0.941 | 0 |
|
|