Research Article

Data Mining Technology Application in False Text Information Recognition

Table 5

Comparison of classification effects between LIBSVM and SMO.

ClassifierFeature setTime (s)Accuracy (%)Recall (%)F-measureROC areaGrowth rate (%)

LIBLinearFS10.0185.33060.8530.8530.853
FS20.0291.94210.9190.9190.9197.74
FS30.0293.18180.9320.9320.9321.41
FS40.0393.80170.9380.9380.9380.64
PolynomialFS10.0186.36360.8640.8630.864
FS20.0292.14880.9210.9210.9216.72
FS30.0393.18180.9320.9320.9321.19
FS40.0292.97520.930.930.93−0.21

SVMRBFFS10.0286.77690.8680.8680.868
FS20.0492.56200.9260.9260.9266.68
FS30.0494.00830.940.940.941.51
FS40.0494.21490.9420.9420.9420.21
SigmoidFS10.0282.23140.8220.8190.822
FS20.0779.33880.7930.7850.793−4.15
FS30.0678.71900.7870.7780.787−0.89
FS40.0680.37190.8040.7970.8042.44

SMORBFFS10.0585.95040.860.8590.86
FS20.0693.59500.9360.9360.9368.96
FS30.0694.62810.9460.9460.9461.07
FS40.0595.04130.950.950.950.42
polyKernelFS1086.57020.8660.8650.866
FS20.0292.97520.930.930.937.51
FS30.0193.80170.9380.9380.9380.86
FS40.0294.21490.9420.9420.9420.43