Research Article
Data Mining Technology Application in False Text Information Recognition
Table 5
Comparison of classification effects between LIBSVM and SMO.
| Classifier | Feature set | Time (s) | Accuracy (%) | Recall (%) | F-measure | ROC area | Growth rate (%) |
| LIB | Linear | FS1 | 0.01 | 85.3306 | 0.853 | 0.853 | 0.853 | — | FS2 | 0.02 | 91.9421 | 0.919 | 0.919 | 0.919 | 7.74 | FS3 | 0.02 | 93.1818 | 0.932 | 0.932 | 0.932 | 1.41 | FS4 | 0.03 | 93.8017 | 0.938 | 0.938 | 0.938 | 0.64 | Polynomial | FS1 | 0.01 | 86.3636 | 0.864 | 0.863 | 0.864 | — | FS2 | 0.02 | 92.1488 | 0.921 | 0.921 | 0.921 | 6.72 | FS3 | 0.03 | 93.1818 | 0.932 | 0.932 | 0.932 | 1.19 | FS4 | 0.02 | 92.9752 | 0.93 | 0.93 | 0.93 | −0.21 |
| SVM | RBF | FS1 | 0.02 | 86.7769 | 0.868 | 0.868 | 0.868 | — | FS2 | 0.04 | 92.5620 | 0.926 | 0.926 | 0.926 | 6.68 | FS3 | 0.04 | 94.0083 | 0.94 | 0.94 | 0.94 | 1.51 | FS4 | 0.04 | 94.2149 | 0.942 | 0.942 | 0.942 | 0.21 | Sigmoid | FS1 | 0.02 | 82.2314 | 0.822 | 0.819 | 0.822 | — | FS2 | 0.07 | 79.3388 | 0.793 | 0.785 | 0.793 | −4.15 | FS3 | 0.06 | 78.7190 | 0.787 | 0.778 | 0.787 | −0.89 | FS4 | 0.06 | 80.3719 | 0.804 | 0.797 | 0.804 | 2.44 |
| SMO | RBF | FS1 | 0.05 | 85.9504 | 0.86 | 0.859 | 0.86 | — | FS2 | 0.06 | 93.5950 | 0.936 | 0.936 | 0.936 | 8.96 | FS3 | 0.06 | 94.6281 | 0.946 | 0.946 | 0.946 | 1.07 | FS4 | 0.05 | 95.0413 | 0.95 | 0.95 | 0.95 | 0.42 | polyKernel | FS1 | 0 | 86.5702 | 0.866 | 0.865 | 0.866 | — | FS2 | 0.02 | 92.9752 | 0.93 | 0.93 | 0.93 | 7.51 | FS3 | 0.01 | 93.8017 | 0.938 | 0.938 | 0.938 | 0.86 | FS4 | 0.02 | 94.2149 | 0.942 | 0.942 | 0.942 | 0.43 |
|
|