Research Article
Matching Sensor Ontologies with Simulated Annealing Particle Swarm Optimization
(1) | Input: Source and target ontologies and , number of iteration , initial temperature , | (2) | population size | (3) | for ( = 0; < n; ++) | (4) | for ( = 0; < 3; ++) | (5) | [i] = (0, 1) | (6) | [i] = (0, 1) | (7) | [i] = | (8) | calculate fitness [i] | (9) | f [i] = fitness[i] | (10) | end for | (11) | end for | (12) | = {[i]} | (13) | = {[i]} | (14) | = {[i]} | (15) | while < do | (16) | = | (17) | for ( = 0; < n; ++) | (18) | for ( = 0; < 3; ++) | (19) | [i] = [i] + ([i]) + | (20) | [i] = [i] + [i] | (21) | update fitness[i] | (22) | if (fitness[i] f [i]) | (23) | P = 1 | (24) | [i] = [i] | (25) | else | (26) | P = | (27) | if (P(0, 1)) | (28) | [i] = [i] | (29) | end if | (30) | end if | (31) | f [i] = fitness[i] | (32) | end for | (33) | end for | (34) | = {[i]} | (35) | = {[i]} | (36) | = {[i]} | (37) | Gbest = {f [i]} | (38) | end while | (39) | Output Gbest |
|