Research Article

Analyzing Drivers’ Distractions due to Smartphone Usage: Evidence from AutoLog Dataset

Table 4

Ordinal Logistic Regression Model for the perception about changing the smartphone interactions to an automatic contextual interface.

Automatic and contextual mode of interactionCoefficientStandard errorZ-Value

Exp−0.9496240.3103208−3.060.002
Sex12.31175.1852642.570.010
Age3.112901.9554621.080.280
Qualification5.546124.5304181.000.316
Driving-mode−3.833772.334614−2.070.038
Traveling mode19.59849.0462042.390.017
Purpose of travel4.575172.3151211.540.123
Valid license−2.758371.960209−0.900.370
SN1Txt5.673373.3379542.000.046
SN2Txt4.598282.3826412.770.006
SN3Txt−4.370222.185859−1.540.123
SN4Txt6.464583.3787822.210.027
SN5Txt−12.243504.894838−2.280.023
SN6Txt5.3868211.9791222.270.023
SN7Txt5.8609083.3511892.080.038
SN8PCall−13.531085.295263−3.100.002
SN9PCall−6.5068112.111559−2.180.029
SN10PCall14.710136.2234962.700.007
SN11PCall−4.4531641.480809−2.270.023
SN1Mail−10.448324.444549−2.600.009
SN2Mail8.5242893.69312.550.011
SN3Mail4.6547654.3962980.850.393
SN4Mail−4.824454.444212−0.890.376
SN5Mail4.6101552.3807171.560.119
SN6Mail13.5460523.4312653.340.001
Visual interface-11.158011.8230141.120.261
Visual interface-24.338073.2310241.000.316
Visual interface-37.2333642.5184253.230.001
Visual interface-4−7.5137613.553192−2.420.015
Visual interface-52.8504262.4491210.800.423
Visual interface-6−5.2917062.012937−2.630.009
Visual interface-7−1.1729931.066752−1.100.272
/cut1125.283939.44332
/cut2152.874448.8225
/cut3170.32153.83508
No of observations = 59
Wald chi2(32) = 57.29
Pseudo R2 = 0.6730
Log pseudolikelihood = −19.236206