Research Article
Analyzing Drivers’ Distractions due to Smartphone Usage: Evidence from AutoLog Dataset
Table 6
Ordinal Logistic Regression Model for the perception about avoiding lengthy messages automatically.
| Avoiding lengthy messages | Coefficient | Standard error | Z-alue | |
| Exp | 0.0450562 | 0.1648833 | 0.95 | 0.344 | Sex | −2.720471 | 1.855887 | −0.99 | 0.324 | Age | −.858536 | 1.097658 | −0.78 | 0.434 | Qualification | 2.16993 | 1.426154 | 1.52 | 0.128 | Driving-mode | 0.1544981 | .9879131 | 0.16 | 0.876 | Traveling mode | 5.649868 | 2.11949 | 2.67 | 0.008 | Purpose of travel | 2.612008 | .9911119 | 2.64 | 0.008 | Valid license | −9.216121 | 3.564899 | −2.59 | 0.010 | SN1Txt | 1.230921 | 1.199268 | 1.03 | 0.305 | SN2Txt | −0.8629046 | .7964669 | −1.08 | 0.279 | SN3Txt | −0.1809369 | .8859942 | −0.20 | 0.838 | SN4Txt | −2.107618 | 1.672393 | −1.26 | 0.208 | SN5Txt | 0.0972826 | 1.644342 | 0.06 | 0.953 | SN6Txt | 0.4282987 | 1.053603 | 0.41 | 0.684 | SN7Txt | 3.022207 | 1.158804 | 2.61 | 0.009 | SN8PCall | 0.0371694 | 1.116448 | 0.03 | 0.973 | SN9PCall | 1.053618 | 0.9636646 | 1.09 | 0.274 | SN10PCall | −2.579661 | 1.381452 | −1.87 | 0.062 | SN11PCall | 2.130834 | 0.9951324 | 2.14 | 0.032 | SN1Mail | −0.3561978 | 1.167004 | −0.31 | 0.760 | SN2Mail | −0.1387213 | 1.004044 | −0.14 | 0.890 | SN3Mail | 0.6601901 | 1.316659 | 0.50 | 0.616 | SN4Mail | 0.478997 | 1.206689 | 0.40 | 0.691 | SN5Mail | 1.257184 | .7716569 | 1.63 | 0.103 | SN6Mail | 2.536931 | .9134279 | 2.78 | 0.005 | Visual interface-1 | 3.161218 | 1.353173 | 2.34 | 0.019 | Visual interface-2 | −3.132817 | 1.248298 | −2.51 | 0.012 | Visual interface-3 | 0.5081588 | 1.088503 | 0.47 | 0.641 | Visual interface-4 | 0.7872293 | 1.161302 | 0.68 | 0.498 | Visual interface-5 | 0.6762423 | 1.361247 | 0.50 | 0.619 | Visual interface-6 | −0.5132211 | 0.4750714 | −1.08 | 0.280 | Visual interface-7 | 1.142862 | 0.9429931 | 1.21 | 0.226 | /cut1 | 35.82099 | 10.84208 | | | /cut2 | 40.25627 | 10.84055 | | | /cut3 | 47.22419 | 11.72782 | | | No of observations = 59 | Wald chi2(32) = 102.30 | | Pseudo R2 = 0.5730 | Log pseudolikelihood = −26.674877 |
|
|