Research Article

Analyzing Drivers’ Distractions due to Smartphone Usage: Evidence from AutoLog Dataset

Table 6

Ordinal Logistic Regression Model for the perception about avoiding lengthy messages automatically.

Avoiding lengthy messagesCoefficientStandard errorZ-alue

Exp0.04505620.16488330.950.344
Sex−2.7204711.855887−0.990.324
Age−.8585361.097658−0.780.434
Qualification2.169931.4261541.520.128
Driving-mode0.1544981.98791310.160.876
Traveling mode5.6498682.119492.670.008
Purpose of travel2.612008.99111192.640.008
Valid license−9.2161213.564899−2.590.010
SN1Txt1.2309211.1992681.030.305
SN2Txt−0.8629046.7964669−1.080.279
SN3Txt−0.1809369.8859942−0.200.838
SN4Txt−2.1076181.672393−1.260.208
SN5Txt0.09728261.6443420.060.953
SN6Txt0.42829871.0536030.410.684
SN7Txt3.0222071.1588042.610.009
SN8PCall0.03716941.1164480.030.973
SN9PCall1.0536180.96366461.090.274
SN10PCall−2.5796611.381452−1.870.062
SN11PCall2.1308340.99513242.140.032
SN1Mail−0.35619781.167004−0.310.760
SN2Mail−0.13872131.004044−0.140.890
SN3Mail0.66019011.3166590.500.616
SN4Mail0.4789971.2066890.400.691
SN5Mail1.257184.77165691.630.103
SN6Mail2.536931.91342792.780.005
Visual interface-13.1612181.3531732.340.019
Visual interface-2−3.1328171.248298−2.510.012
Visual interface-30.50815881.0885030.470.641
Visual interface-40.78722931.1613020.680.498
Visual interface-50.67624231.3612470.500.619
Visual interface-6−0.51322110.4750714−1.080.280
Visual interface-71.1428620.94299311.210.226
/cut135.8209910.84208
/cut240.2562710.84055
/cut347.2241911.72782
No of observations = 59
Wald chi2(32) = 102.30
Pseudo R2 = 0.5730
Log pseudolikelihood = −26.674877