Research Article
Feature Entropy Estimation (FEE) for Malicious IoT Traffic and Detection Using Machine Learning
Table 2
Evaluation of proposed methodology on NSL-KDD dataset.
| Testsets | ā | Accuracy | Precision | Recall | F_measure |
| Testset_1 | DoS | 94.54444 | 91.10397 | 94.22564 | 92.63851 | Probe | 95.93165 | 84.76717 | 68.65544 | 75.86532 | R2L | 99.50386 | 95.67901 | 38.94472 | 55.35714 | U2R | 99.96626 | 99.97023 | 99.99603 | 99.98313 |
| Testset_2 | DoS | 94.57939 | 91.14358 | 94.29584 | 92.69292 | Probe | 95.12826 | 90.0986 | 53.4878 | 67.1258 | R2L | 99.54866 | 94.96855 | 44.15205 | 60.27944 | U2R | 99.96825 | 99.97505 | 99.99319 | 99.98412 |
| Testset_3 | DoS | 94.64966 | 91.31289 | 94.31761 | 92.79093 | Probe | 95.21327 | 90.21739 | 54.37197 | 67.85143 | R2L | 99.51577 | 96.18321 | 41.44737 | 57.93103 | U2R | 99.97354 | 99.97883 | 99.99471 | 99.98677 |
| Testset_4 | DoS | 94.62738 | 91.27438 | 94.31897 | 92.7717 | Probe | 94.47814 | 90.65934 | 45.15908 | 60.28774 | R2L | 99.50783 | 94.17476 | 39.43089 | 55.58739 | U2R | 99.98095 | 99.98412 | 99.99682 | 99.99047 |
| Testset_5 | DoS | 94.57432 | 91.14699 | 94.23958 | 92.66749 | Probe | 95.92379 | 84.40888 | 69.27966 | 76.0996 | R2L | 99.51578 | 96.20253 | 38.97436 | 55.47445 | U2R | 99.98015 | 99.98412 | 99.99603 | 99.99008 |
|
|