Research Article

Feature Entropy Estimation (FEE) for Malicious IoT Traffic and Detection Using Machine Learning

Table 2

Evaluation of proposed methodology on NSL-KDD dataset.

Testsets AccuracyPrecisionRecallF_measure

Testset_1DoS94.5444491.1039794.2256492.63851
Probe95.9316584.7671768.6554475.86532
R2L99.5038695.6790138.9447255.35714
U2R99.9662699.9702399.9960399.98313

Testset_2DoS94.5793991.1435894.2958492.69292
Probe95.1282690.098653.487867.1258
R2L99.5486694.9685544.1520560.27944
U2R99.9682599.9750599.9931999.98412

Testset_3DoS94.6496691.3128994.3176192.79093
Probe95.2132790.2173954.3719767.85143
R2L99.5157796.1832141.4473757.93103
U2R99.9735499.9788399.9947199.98677

Testset_4DoS94.6273891.2743894.3189792.7717
Probe94.4781490.6593445.1590860.28774
R2L99.5078394.1747639.4308955.58739
U2R99.9809599.9841299.9968299.99047

Testset_5DoS94.5743291.1469994.2395892.66749
Probe95.9237984.4088869.2796676.0996
R2L99.5157896.2025338.9743655.47445
U2R99.9801599.9841299.9960399.99008