Research Article
SingleNet: A Lightweight Convolutional Neural Network for Safety Detection of an Industrial Control System
Table 3
Experimental results of the comparison algorithms on the public datasets.
| | Datasets | Algorithms | Accuracy | Training time | Model size |
| | Oil depot dataset | SingleNet | 98.4% | 3 min 18 s | 1.6 MB | | LeNet | 72.6% | 2 h 14 min 26 s | 101 MB | | AlexNet | 27.6% | 1 h 6 min 38 s | 22.4 MB | | SqueezeNet | 94.5% | 2 h 14 min 59 s | 2.65 MB | | MobileNet | 91.0% | 2 h 16 min 49 s | 12.4 MB | | ShuffleNet | 91.6% | 1 h 10 min 34 s | 1.25 MB |
| | Batadal dataset | SingleNet | 98.4% | 3 min 31 s | 1.62 MB | | LeNet | 84.5% | 18 min 37 s | 15.5 MB | | AlexNet | 46.9% | 19 min 24 s | 3.15 MB | | SqueezeNet | 2.77556e-17 | 26 min 28 s | 2.02 MB | | MobileNet | 97.7% | 36 min 27 s | 12.4 MB | | ShuffleNet | Not convergence | — | — |
| | Mississippi dataset | SingleNet | 98.2% | 3 min 33 s | 1.63 MB | | LeNet | 86.4% | 15 min 29 s | 10.6 MB | | AlexNet | 84.4% | 8 min 2 s | 3.16 MB | | SqueezeNet | 98.9% | 23 min 10 s | 2.66 MB | | MobileNet | 89.6% | 31 min 10 s | 12.4 MB | | ShuffleNet | Not convergence | — | — |
|
|