Research Article

A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms

Table 2

Best values for hyper parameter tuning to improve classifiers accuracy.

AlgorithmBest Hyperparameter Values
SVMKernel: sigmoid, C:0.5
CARTMax features = “auto,” random state = 123, min samples split = 20, min samples leaf = 11
ABN estimators = 50, learning rate = 0.05
LDAShrinkage = “auto,” solver = “lsqr”
GBMN estimators:250
RFCriterion = “gini,” n jobs = −1, min samples leaf = 2, min samples split = 5, n estimators = 15, random state = 123
ETN jobs = −1, min samples leaf = 1, n estimators = 15, random state = 123, criterion = “gini,” Min samples split = 6
XBoostobjective = “reg: linear,” colsample bytree = 0.3, learning rate = 0.1, max depth = 15, alpha = 5, n estimators = 123