Research Article

Wavelet Sparse Coding-Based Lightweight Networks for Image Superresolution

Table 3

Comparisons of WLSR with public benchmark scores of CNNs. We use float32 WLSR and Luminance () channel while computing PSNR (The bold parts indicate the best performance).

ModelsParametersScaleSet5Set14BSD100Urban100

Bicubic×330.4127.5527.2224.47
FSRCNN25K×333.1629.4328.6026.48
VDSR668K×333.6629.7728.8227.14
ESPCN31K×333.1329.4228.5026.41
XLSR22K×333.4229.7328.5526.71
WLSR22K×333.6729.9728.8426.94
Bicubic×428.4226.0025.2623.06
FSRCNN25K×430.7127.7026.9724.61
VDSR668K×431.3528.0227.2925.18
ESPCN31K×430.9027.7327.0625.07
XLSR22K×431.1928.0427.1125.37
WLSR22K×431.4628.1627.3025.41