Research Article

[Retracted] A Data Mining-Based Method for Quality Assessment of Ideological and Political Education in Universities

Algorithm 1

Apriori promotion algorithm.
Input: transaction database D.
Output: frequent item set L of D
(1) Start
(2) Scan D
(3) For each transaction T ∈ D {
(4) Find all subitem of T subItemSet
(5)  For i = 1; i < max_t; i++ {
(6)   If length of subitem = i {
(7)    If i_hashTable not contain the subitem {
(8)     Subitem.count = 1
(9)     Add subitem to i_hashTable
(10)    } else {
(11)     Subitem.count+ = 1
(12)     Value = subitem.count
(13)     Update value of key subitem in i_hashTable
(14)     }
(15)    }
(16)   }
(17) }
(18) If there is an update to the database data, cache the updated data
(19) Cache the updated data to the data set db_delete, db_add, db_update, db_noupdate, respectively
(20) If db_update not null {
(21)  Add db_update to db_add
(22)  Add db_noupdate to db_delete
(23) }
(24) If db_delete not null {
(25) For each transaction T ∈ db_delete {
(26)  Find all subitem of T subItemSet
(27)   For each subitem ∈ subItemSet {
(28)    Find the subitem key-value
(29)    Subitem.count− = 1
(30)    Update value of key subitem in i_hashTable
(31)    }
(32)   }
(33) }
(34) Produce has_infrequent_subset (c, Lk − 1)
(35)  For all (k − 1) subset s of c
(36)   If s in Lk − 1 return true;
(37)   Else return false
(38) End