Research Article

Forecast of Ground Deformation Caused by Tunnel Excavation Based on Intelligent Neural Network Model

Table 2

Training samples.

CodeCTWQRI

1622.08350.60.63.44−14.2306
2619.91950.30.63.5−23.1595
3221.57770.90.83.57−12.3851
4621.98690.30.73.52−30.8177
5421.72650.70.62.9−16.73
6419.56880.50.73.32−20.6861
7521.95210.60.72.82−8.5844
8420.01720.30.52.92−17.4464
9521.87370.50.93.54−1.824
10322.0290.70.83.63−19.0228
11520.27480.70.52.93−3.4179
12519.56150.50.93.7−17.2956
13320.31810.90.63.04−20.342
14321.81450.80.53.35−21.6668
15520.41170.50.52.82−12.409
16320.45610.30.93.4−13.5146
17422.12270.90.93.15−27.5172
18520.36380.20.62.88−11.1454
19321.01170.70.53.14−5.7283
20221.70480.90.93.16−22.0582
21321.11940.40.63.01−20.233
22320.41920.70.53.43−14.5012
23520.72410.50.93.63−27.7672
24620.86820.30.62.95−22.4095
25519.38980.20.53.12−20.1598
26421.11540.60.63.23−6.4165
27319.77190.40.63.16−13.9018
28619.30.80.93.44−24.413
29219.55520.80.72.85−30.8232
30420.6456190.90.73.67−12.1187