Research Article

Demand Forecasting for Rural E-Commerce Logistics: A Gray Prediction Model Based on Weakening Buffer Operator

Table 1

Raw data of logistics demand indicators from 2013 to 2017.

Indicator yearX0 (unit: yuan)X1 (unit: 100 million yuan)X2 (unit: 10 thousand tons)X3 (unit: 10 thousand tons)X4 (unit: 10 thousand tons)X5 (unit: kilometers)

20119371.7336.361306.9511.41234978190724
201210542.811.341396.3311.39266359194943
201311067.8262.351315.9011.01328138202915
201412245.6374.321357.3411.27353732212094
201513360.4351.241358.1311.38349832216023
201614512.2423.771360.2211.37377645218085
201715779.7455.491208.5610.43392381219580