Research Article
Flow Graph Anomaly Detection Based on Unsupervised Learning
Algorithm 1
Flow graph anomaly detection.
Input: Graph stream G | Output:abnormal object | 1:function PREPROCESSOR(G) | 2: if called by Controller then | 3: 3 types of Anomaly Samples A←NEGATIVESAMPLING(G) | 4: A←NODE2VEC(A) | 5: return A | 6 else | 7: X←NODE2VEC(G) | 8: X←SEMODEL(X) | 9: return X | 10: end if | 1l:end function | 12: | 13:function CONTROLLER(G) | 14: A ← PREPROCESSOR(G) | 15: for a in A do | 16: Gaussian distribution←VARIATIONAL AUTO-ENCODER(a) | 17: Save Model Gaussian distribution | 18: end for | 19:end function | 20: | 2l:function OPTIMIZER(X-test) | 22: for x in X-test do | 23: xReconst←AUTO-ENCODER(x) | 24: xSample←GAUSSIAN DISTRIBUTION | 25: Deviation←LOSSFUNCTION(x,xReconst, xSample) | 26: end for | 27:end function |
|