Research Article
“Dimension Reduction: Feature Subset” Method for Selecting the Best Index Combination in Reputation Evaluation of Crowdsourcing Participants
Table 2
Total variance of original variables explained by principal components.
| Principal component | Initial eigenvalue | Extract the sum of squares of loads | Total | Variance contribution rate (%) | Cumulative percentage (%) | Feature value | Variance contribution rate (%) | Cumulativepercentage (%) |
| 1 | 5.484 | 19.587 | 19.587 | 5.484 | 19.587 | 19.587 | 2 | 4.699 | 16.781 | 36.369 | 4.699 | 16.781 | 36.369 | 3 | 1.983 | 7.084 | 43.452 | 1.983 | 7.084 | 43.452 | 4 | 1.636 | 5.842 | 49.295 | 1.636 | 5.842 | 49.295 | 5 | 1.577 | 5.634 | 54.929 | 1.577 | 5.634 | 54.929 | 6 | 1.243 | 4.439 | 59.367 | 1.243 | 4.439 | 59.367 | 7 | 1.218 | 4.352 | 63.719 | 1.218 | 4.352 | 63.719 | 8 | 1.046 | 3.737 | 67.456 | 1.046 | 3.737 | 67.456 | 9 | 1.031 | 3.683 | 71.139 | 1.031 | 3.683 | 71.139 | 10 | 1.008 | 3.600 | 74.738 | 1.008 | 3.600 | 74.738 | 11 | 0.967 | 3.454 | 78.192 | | | | 12 | 0.946 | 3.377 | 81.569 | | | | 13 | 0.858 | 3.063 | 84.632 | | | | 14 | 0.738 | 2.635 | 87.268 | | | | 15 | 0.680 | 2.428 | 89.696 | | | | 16 | 0.528 | 1.887 | 91.583 | | | | 17 | 0.485 | 1.733 | 93.316 | | | | 18 | 0.357 | 1.276 | 94.592 | | | | 19 | 0.320 | 1.143 | 95.735 | | | | 20 | 0.303 | 1.083 | 96.818 | | | |
|
|
Note. List the principal components with weight ranking 1–20. The eigenvalues of the 10th principal components are greater than 1 in bold.
|