Research Article
“Dimension Reduction: Feature Subset” Method for Selecting the Best Index Combination in Reputation Evaluation of Crowdsourcing Participants
Table 4
Accuracy of ten-fold cross-validation of feature subset selected by classifier.
| Feature subset | ReliefF-DT | ReliefF-SVM | ReliefF-BPNN | ReliefF-RBFNN | ReliefF-NB | ReliefF-KNN |
| 5 | 0.9036 | 0.9104 | 0.9050 | 0.8930 | 0.8592 | 0.8835 | 6 | 0.9043 | 0.9131 | 0.9087 | 0.8967 | 0.8643 | 0.8826 | 7 | 0.9026 | 0.9112 | 0.9085 | 0.8974 | 0.8665 | 0.8875 | 8 | 0.9031 | 0.9132 | 0.9088 | 0.8981 | 0.8788 | 0.8958 | 9 | 0.9055 | 0.9147 | 0.9086 | 0.8987 | 0.8843 | 0.8934 | 10 | 0.9012 | 0.9117 | 0.9099 | 0.8938 | 0.8874 | 0.8897 | 11 | 0.8993 | 0.9120 | 0.9126 | 0.8920 | 0.8869 | 0.8905 | 12 | 0.8998 | 0.9111 | 0.9132 | 0.8860 | 0.8856 | 0.8894 | 13 | 0.9034 | 0.9127 | 0.9108 | 0.8850 | 0.8890 | 0.8895 | 14 | 0.9032 | 0.9140 | 0.9109 | 0.8800 | 0.8818 | 0.8872 | 15 | 0.9012 | 0.9104 | 0.9100 | 0.8740 | 0.8832 | 0.8870 | 16 | 0.8997 | 0.9112 | 0.9130 | 0.8710 | 0.8791 | 0.8926 | 17 | 0.8987 | 0.9137 | 0.9100 | 0.8670 | 0.8760 | 0.8900 | 18 | 0.9000 | 0.9089 | 0.9110 | 0.8630 | 0.8781 | 0.8870 | 19 | 0.8977 | 0.9052 | 0.9130 | 0.8570 | 0.8782 | 0.8848 | 20 | 0.8989 | 0.9010 | 0.9100 | 0.8560 | 0.8781 | 0.8830 |
|
|
The best result for each classifier is in bold.
|