Research Article

Multichannel Cross-Scale Semantic Coherent Attention Network for Image Inpainting

Table 2

Comparison result of different methods.

IndexDatasetUrban100DTDCelebA
Mask ratio0.30.40.50.30.40.50.30.40.5

PSNR↑RDN25.804726.004427.541824.850226.124828.530725.317527.498029.2314
DeepFill24.909524.177424.897722.933225.465625.610028.415829.327928.8496
Pconv20.541520.188420.205921.143921.184220.519024.237524.059124.8409
RFR34.045137.332533.494829.978428.399530.677535.586932.510829.2596
PSR34.267336.666436.507135.886735.226734.943337.704033.688634.2690
Our34.632339.394237.865137.646036.243235.993638.652837.493436.6306

SSIM↑RDN0.82070.82030.86890.74420.80240.85710.82510.87520.9086
DeepFill0.76590.72740.76100.68470.74900.73440.88150.89820.8639
Pconv0.64050.60810.62290.61260.63650.68450.76590.75850.8067
RFR0.97470.97880.95120.92590.90920.95130.92880.95700.7723
PSR0.97980.98840.98340.97670.97460.97560.98450.97130.9779
Our0.98560.98830.98460.97940.97770.97730.98510.98130.9797

L1↓RDN0.02610.03160.02330.03790.03080.02340.02590.01950.0141
DeepFill0.04120.04940.04800.05200.05050.04310.02740.02500.0231
Pconv0.07430.08470.07330.07690.07220.08120.04800.04700.0453
RFR0.01780.01770.01920.01730.01480.01590.01820.01450.0131
PSR0.01630.01480.01330.01250.01160.01610.01070.01190.0134
Our0.01350.00960.01090.01000.01140.01070.01270.01320.0116