Research Article

Sentimental Analysis of Industry 4.0 Perspectives Using a Graph-Based Bi-LSTM CNN Model

Table 1

The hyperparameter feature settings.

Sl no.LayersParameters

1Embeddinginput_dim = 5000, output_dim = 20,
input_length = 30
2SimpleRNNNeuron units = 100
3LSTMNeuron units = 100
4CNNnb_filter = 20, filter_length = 3,
activation = ‘relu’
5Max-poolingpool_length = 2
6Dropout(Layer 1)Units: 0.5
7Dropout(Layer 2)Units: 0.3
8Dense(Layer 1)units = 20, activation = ‘relu’
9Dense(Layer 2)units = 1, activation = ‘sigmoid’
10model.compile()loss = ‘binary_crossentropy’, optimizer = ‘Adam’
11model.fit()batch_size = 32, epochs = 8
12model.predict()batch_size = 32, verbose = 1
13model.evaluate()verbose = 1