Research Article
Sentimental Analysis of Industry 4.0 Perspectives Using a Graph-Based Bi-LSTM CNN Model
Table 1
The hyperparameter feature settings.
| Sl no. | Layers | Parameters |
| 1 | Embedding | input_dim = 5000, output_dim = 20, | input_length = 30 | 2 | SimpleRNN | Neuron units = 100 | 3 | LSTM | Neuron units = 100 | 4 | CNN | nb_filter = 20, filter_length = 3, | activation = ‘relu’ | 5 | Max-pooling | pool_length = 2 | 6 | Dropout(Layer 1) | Units: 0.5 | 7 | Dropout(Layer 2) | Units: 0.3 | 8 | Dense(Layer 1) | units = 20, activation = ‘relu’ | 9 | Dense(Layer 2) | units = 1, activation = ‘sigmoid’ | 10 | model.compile() | loss = ‘binary_crossentropy’, optimizer = ‘Adam’ | 11 | model.fit() | batch_size = 32, epochs = 8 | 12 | model.predict() | batch_size = 32, verbose = 1 | 13 | model.evaluate() | verbose = 1 |
|
|