Research Article

A Novel Data-Driven Method for Medium-Term Power Consumption Forecasting Based on Transformer-LightGBM

Table 1

The transformer-lightGBM parameter settings.

ModelParametersValue

Transformernum_layers2
d_model256
num_heads2
dff256
input_vocab_size8500
maximum_position_encoding6
optimizerAdam
learning_rate0.0001
lossmae
metricsmse

LightGBMGridSearchCV (optimize the parameters method)EstimatorobjectiveRegression
boosting_typegbdt
n_estimators81
metricrmse
boosting_typegbdt
objectiveRegression
learning_rate0.3
num_leaves50
max_depth17
subsample0.8
colsample_bytree0.8
max_depthrange (10, 30, 5)
num_leavesrange (50, 170, 30)
learning_rate[0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.01]
feature_fraction[0.5, 0.6, 0.7, 0.8, 0.9]
bagging_fraction[0.6, 0.7, 0.8, 0.9, 1.0]
subsample1
min_samples_split2
min_samples_leaf1
num_leaves110
max_depth10
learning_rate0.1
feature_fraction0.8
bagging_fraction0.8
bagging_freq10
num_boost_round531
early_stopping_rounds200