Research Article
Curvature-Driven Deformable Convolutional Networks for End-To-End Object Detection
Table 2
Ablation study on DCNv1, DCNv2, and our C-DCNets.
| Method | Shorter side | Faster R-CNN | YOLOv4 | (600) | | | | param | FLOP | | | | param | FLOP |
| Baseline | Regular | 39.4 | 60.8 | 42.4 | 51.30 M | 100.1 G | 41.7 | 63.5 | 44.7 | 26.8 M | 146.4 G | Deformation | dconv@c3c5+ | 40.1 | 62.8 | 43.6 | 52.70 M | 102.8 G | 42.3 | 64.9 | 46.1 | 28.5 M | 150.5 G | dpool(DCNv1) [6] | Modulated deformation | mdconv@c3c5+ | 41.4 | 63.0 | 44.1 | 65.5 M | 146.2 G | 43.4 | 65.2 | 47.6 | 36.3 M | 178.2 G | Mdpool [7] | Curvature-driven | C-dconv@c3c5+ | 43.3 | 65.2 | 47.4 | 52.7 M | 109.1 G | 45.2 | 67.0 | 49.8 | 28.5 M | 165.4 G | Deformation | Cdpool |
|
|
The input images are of shorts side 600 pixels. And all settings are consistent with Table 1. The bold value means the best value of each item. |