Research Article

Curvature-Driven Deformable Convolutional Networks for End-To-End Object Detection

Table 2

Ablation study on DCNv1, DCNv2, and our C-DCNets.

MethodShorter sideFaster R-CNNYOLOv4
(600) paramFLOP paramFLOP

BaselineRegular39.460.842.451.30 M100.1 G41.763.544.726.8 M146.4 G
Deformationdconv@c3c5+40.162.843.652.70 M102.8 G42.364.946.128.5 M150.5 G
dpool(DCNv1) [6]
Modulated deformationmdconv@c3c5+41.463.044.165.5 M146.2 G43.465.247.636.3 M178.2 G
Mdpool [7]
Curvature-drivenC-dconv@c3c5+43.365.247.452.7 M109.1 G45.267.049.828.5 M165.4 G
DeformationCdpool

The input images are of shorts side 600 pixels. And all settings are consistent with Table 1. The bold value means the best value of each item.