Research Article
Anomaly Detection in QAR Data Using VAE-LSTM with Multihead Self-Attention Mechanism
Table 5
Anomaly detection performance on four public benchmark datasets.
| Methods | KPI1 | KPI2 | NAB1 | NAB2 | | R | F1 | | R | F1 | | R | F1 | | R | F1 |
| LSTMS | 0.7639 | 0.6544 | 0.7049 | 0.5850 | 0.9997 | 0.7382 | 0.4536 | 1.0 | 0.6241 | 0.8604 | 0.7915 | 0.8779 | LSTM-AE | 0.7261 | 0.8521 | 0.7841 | 0.6773 | 0.8230 | 0.7430 | 0.7611 | 0.6807 | 0.6870 | 0.7627 | 0.8733 | 0.8142 | LSTM-VAE | 0.7815 | 0.9545 | 0.8594 | 0.8734 | 0.9271 | 0.8995 | 0.7468 | 1.0 | 0.8550 | 0.9090 | 0.6563 | 0.7623 | VAE-based MHSA-LSTM | 0.8221 | 1.0 | 0.9023 | 0.8786 | 1.0 | 0.9354 | 0.8731 | 1.0 | 0.9322 | 0.9547 | 0.8146 | 0.8791 |
|
|