Research Article

Anomaly Detection in QAR Data Using VAE-LSTM with Multihead Self-Attention Mechanism

Table 5

Anomaly detection performance on four public benchmark datasets.

MethodsKPI1KPI2NAB1NAB2
RF1RF1RF1RF1

LSTMS0.76390.65440.70490.58500.99970.73820.45361.00.62410.86040.79150.8779
LSTM-AE0.72610.85210.78410.67730.82300.74300.76110.68070.68700.76270.87330.8142
LSTM-VAE0.78150.95450.85940.87340.92710.89950.74681.00.85500.90900.65630.7623
VAE-based MHSA-LSTM0.82211.00.90230.87861.00.93540.87311.00.93220.95470.81460.8791