Research Article
Parallel Big Bang-Big Crunch-LSTM Approach for Developing a Marathi Speech Recognition System
Table 2
Performance analysis of the designed framework on Marathi language with different algorithms for six different SCs in terms of error measures.
| | Speech corpus (SC) | Algorithms | WER | WAR | SER |
| | SC 1 | LSTM [21] | 0.253333 | 0.826667 | 0.233934 | | BBBC-LSTM [23] | 0.233333 | 0.846667 | 0.221979 | | PB3C-LSTM | 0.193333 | 0.86 | 0.189498 |
| | SC 2 | LSTM [21] | 0.206667 | 0.86 | 0.190093 | | BBBC-LSTM [23] | 0.22 | 0.853333 | 0.206988 | | PB3C-LSTM | 0.206667 | 0.853333 | 0.231292 |
| | SC 3 | LSTM [21] | 0.266667 | 0.826667 | 0.26818 | | BBBC-LSTM [23] | 0.213333 | 0.866667 | 0.23345 | | PB3C-LSTM | 0.24 | 0.84 | 0.254593 |
| | SC 4 | LSTM [21] | 0.226667 | 0.853333 | 0.225522 | | BBBC-LSTM [23] | 0.226667 | 0.853333 | 0.230098 | | PB3C-LSTM | 0.22 | 0.853333 | 0.200145 |
| | SC 5 | LSTM [21] | 0.22 | 0.833333 | 0.223583 | | BBBC-LSTM [23] | 0.233333 | 0.826667 | 0.23908 | | PB3C-LSTM | 0.226667 | 0.866667 | 0.230612 |
| | SC 6 | LSTM [21] | 0.22 | 0.866667 | 0.215973 | | BBBC-LSTM [23] | 0.2 | 0.866667 | 0.216662 | | PB3C-LSTM | 0.18 | 0.88 | 0.194015 |
|
|