Research Article
A ResNet-LSTM Based Credit Scoring Approach for Imbalanced Data
Table 3
Comparison of different data generation algorithm (Bank dataset).
| | Critics | None | ADASYN | SMOTE | BorderlineSMOTE | CGAN | ACTGAN |
| Support vector machine | Recall | 97.53 | 99.18 | 99.07 | 99.25 | 99.13 | 99.02 | F1 | 77.01 | 90.66 | 89.66 | 89.75 | 89.37 | 89.27 | AUC | 94.52 | 95.38 | 95.11 | 95.21 | 95.56 | 96.02 | KS | 88.41 | 84.59 | 82.90 | 83.25 | 83.48 | 89.01 |
| Logistic regression | Recall | 79.43 | 97.95 | 98.75 | 98.68 | 89.54 | 92.60 | F1 | 72.28 | 90.31 | 89.68 | 89.79 | 80.92 | 81.84 | AUC | 86.50 | 94.91 | 95.05 | 95.13 | 90.37 | 92.40 | KS | 70.01 | 82.98 | 82.46 | 82.72 | 84.65 | 85.54 |
| Decision tree | Recall | 62.99 | 86.59 | 85.12 | 86.11 | 69.24 | 89.24 | F1 | 63.20 | 87.23 | 85.17 | 85.42 | 71.05 | 81.05 | AUC | 78.73 | 90.74 | 89.58 | 89.93 | 81.65 | 91.34 | KS | 53.53 | 81.04 | 77.71 | 78.93 | 61.57 | 81.69 |
| K nearest neighbors | Recall | 24.70 | 90.22 | 88.98 | 89.48 | 94.46 | 95.76 | F1 | 13.45 | 88.26 | 87.11 | 87.33 | 84.95 | 84.05 | AUC | 16.06 | 92.06 | 91.40 | 91.63 | 94.42 | 94.09 | KS | 10.04 | 80.12 | 82.78 | 82.69 | 86.17 | 87.46 |
|
|