Research Article
A Malware Detection Scheme via Smart Memory Forensics for Windows Devices
Table 1
Comparison of detection performance of DCNN model on three types of feature sets.
| Feature | Dimension | Accuracy | Sample | Precision | Recall | F1-score |
| LBP | 224 × 224 | 0.9297 | Malware | 0.90 | 0.61 | 0.73 | Benign | 0.93 | 0.99 | 0.96 | 300 × 300 | 0.9399 | Malware | 0.97 | 0.96 | 0.96 | Benign | 0.80 | 0.82 | 0.81 |
| GLCM | 224 × 224 | 0.8873 | Malware | 0.95 | 0.28 | 0.43 | Benign | 0.88 | 1.00 | 0.94 | 300 × 300 | 0.8929 | Malware | 0.87 | 0.36 | 0.50 | Benign | 0.89 | 0.99 | 0.94 |
| LBP + GLCM | 224 × 224 | 0.9780 | Malware | 0.97 | 0.98 | 0.98 | Benign | 0.98 | 0.97 | 0.98 | 300 × 300 | 0.9807 | Malware | 0.98 | 0.99 | 0.98 | Benign | 0.99 | 0.98 | 0.98 |
|
|