Research Article
Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology
| Input: the results set predicted by each base classifiers Y = {y1, y2, …, yn}, confusion matrix set E = {e1, e2, …, en}; | | Output: final prediction result C; | (1) | a [2] ← {0, 0}; | (2) | for i in {0, 1} do | (3) | for j in {1, 2, …, n} do | (4) | if yj = = i then | (5) | j ← 1; | (6) | else | (7) | j ← 0; | (8) | end if | (9) | a [i] ← a [i] + jejii; | (10) | end for | (11) | end for | (12) | C ← argmax (a); | (13) | return C; |
|