Research Article

Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology

Algorithm 2

Weighted majority voting
Input: the results set predicted by each base classifiers Y = {y1, y2, …, yn}, confusion matrix set E = {e1, e2, …, en};
Output: final prediction result C;
(1)a [2] ← {0, 0};
(2)for i in {0, 1} do
(3)for j in {1, 2, …, n} do
(4)if yj = = i then
(5)j ← 1;
(6)else
(7)j ← 0;
(8)end if
(9)a [i] ← a [i] + jejii;
(10)end for
(11)end for
(12)C ← argmax (a);
(13)return C;