Research Article

Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology

Algorithm 3

Naive Bayes
Input: the results set predicted by each base classifiers Y = {y1, y2, …, yn}, confusion matrix set E = {e1, e2, …, en}, the number of samples of each types M = {m0, m1};
Output: final prediction result C;
(1)a [2] ← {0, 0};
(2)for i in {0, 1} do
(3)c i ← 1;
(4)for j in {1, 2, …, n} do
(5)k ← yj;
(6)c i ← ciejik;
(7)end for
(8)a [i] ← mici;
(9)end for
(10)C ← argmax (a);
(11)return C;