Research Article
Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology
Table 3
Anomaly detection algorithm performance comparison (anomaly ratio of 0.05).
| Dataset | Performance metrics | LODA | AE | PCA | HBOS | iForest | MV | WMV | NB |
| CICIDS2017 | AUC | 0.635 | 0.576 | 0.538 | 0.632 | 0.657 | 0.763 | 0.749 | 0.852 | RECALL | 0.497 | 0.438 | 0.401 | 0.531 | 0.492 | 0.794 | 0.821 | 0.886 | Time (seconds) | 0.511 | 8.369 | 0.732 | 0.902 | 7.436 | 7.082 | 8.198 | 8.073 |
| UNSW-NB 15 | AUC | 0.675 | 0.739 | 0.852 | 0.724 | 0.913 | 0.871 | 0.912 | 0.925 | RECALL | 0.724 | 0.791 | 0.893 | 0.852 | 0.937 | 0.897 | 0.943 | 0.961 | Time (seconds) | 0.867 | 10.023 | 0.992 | 1.942 | 8.241 | 6.924 | 8.245 | 8.128 |
| KDDCUP 99 | AUC | 0.942 | 0.923 | 0.924 | 0.938 | 0.953 | 0.910 | 0.928 | 0.956 | RECALL | 0.964 | 0.957 | 0.940 | 0.964 | 0.983 | 0.924 | 0.965 | 0.995 | Time (seconds) | 0.735 | 9.710 | 1.324 | 1.672 | 8.092 | 7.942 | 8.124 | 8.206 |
|
|