Research Article
Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology
Table 4
Anomaly detection algorithm performance comparison (anomaly ratio of 0.1).
| Dataset | Performance metrics | LODA | AE | PCA | HBOS | iForest | WV | WMV | NB |
| CICIDS2017 | AUC | 0.629 | 0.643 | 0.683 | 0.513 | 0.753 | 0.789 | 0.819 | 0.842 | RECALL | 0.389 | 0.421 | 0.569 | 0.492 | 0.628 | 0.853 | 0.853 | 0.896 | Time (seconds) | 0.441 | 6.649 | 0.484 | 0.197 | 7.391 | 3.724 | 3.621 | 3.604 |
| UNSW-NB 15 | AUC | 0.721 | 0.691 | 0.783 | 0.689 | 0.927 | 0.919 | 0.924 | 0.943 | RECALL | 0.752 | 0.803 | 0.902 | 0.762 | 0.932 | 0.934 | 0.951 | 0.958 | Time (seconds) | 0.529 | 8.236 | 0.692 | 0.384 | 9.242 | 4.045 | 4.578 | 4.248 |
| KDDCUP 99 | AUC | 0.928 | 0.956 | 0.931 | 0.928 | 0.954 | 0.894 | 0.927 | 0.961 | RECALL | 0.952 | 0.969 | 0.950 | 0.955 | 0.985 | 0.961 | 0.985 | 0.993 | Time (seconds) | 0.502 | 7.923 | 0.669 | 0.328 | 8.927 | 3.928 | 4.029 | 4.293 |
|
|