Research Article

Lane Marker Detection Based on Multihead Self-Attention

Table 2

Comparison among different lane mark detection models based on the CULane dataset.

ModelTotalNormalCrowdHighlightShadowArrowCurveCrossNightNo lineFPS

SCNN [17]71.6090.6069.7058.5066.9084.1064.40199066.1043.407.5
ERF-Net [29]73.1091.5071.6066.0171.3087.2071.60219967.1045.1085.87
R-34-SAD [28]70.7089.9068.5059.9067.7083.8066.02196064.6042.2075
R-34-E2E [30]71.5090.4069.9061.5068.1083.7069.80207763.2045.01—

2-head self-attention (ours)75.4391.4673.6266.2464.0787.0966.19132969.9648.68170.5
4-head self-attention (ours)75.5291.3473.5666.1866.8186.7965.60111570.3047.89169.6
8-head self-attention (ours)75.5591.4373.8566.1969.6887.0265.81128669.8548.18167.8

The significance of bold values means that F1 is the most highest one.