Research Article
Remote Sensing Image Change Detection Network Based on Twin High-Resolution Representation
Table 3
Results of the quantitative evaluation of the different methods on the CDD and DSIFN datasets.
| Models | CDD | DSIFN | Precision (%) | Recall (%) | F1 (%) | OA (%) | Precision (%) | Recall (%) | F1 (%) | OA (%) |
| FCN-PP | 0.8264 | 0.8060 | 0.8047 | 0.9536 | 0.5640 | 0.6703 | 0.6126 | 0.8559 | FC-siam-conc | 0.8441 | 0.8250 | 0.8250 | 0.9572 | 0.4183 | 0.5963 | 0.4917 | 0.7905 | FC-siam-diff | 0.8578 | 0.8364 | 0.8373 | 0.9575 | 0.5151 | 0.6554 | 0.5769 | 0.8366 | Unet++_MSOF | 0.8954 | 0.8711 | 0.8756 | 0.9673 | 0.5983 | 0.6591 | 0.6273 | 0.8668 | IFN | 0.9496 | 0.8608 | 0.9030 | 0.9771 | 0.6711 | 0.6754 | 0.6733 | 0.8886 | TCANet (ours) | 0.9670 | 0.8798 | 0.9213 | 0.9788 | 0.9104 | 0.8893 | 0.8987 | 0.9537 |
|
|
The best ones are marked in bold.
|