Research Article

Modeling and Optimization of -Type Queueing Networks: An Efficient Sensitivity Analysis Approach

Algorithm 1

Policy gradient algorithm.
Input: An arbitrary initial policy ν(t)=(μ1(t),,μN(t)(t))Ω(t) at given t0.
Output: The optimal policy for all user queues ν*(t)=(μ1*(t),,μN(t)*(t))Ω(t).
     Procedure:
 (1) Choose 0<ϵ1 as the stopping criterion for all user queues.
 (2) for  queue i=1 to N(t)  do
 (3)  repeat
 (4)   Set iteration index l=0.
 (5)   Calculate πμil(t) and gμil(t) by solving (2.6) and (3.2), respectively.
 (6)   Determine the gradient such that:
            ηfμil(t)=πμil(t)Pμil(t)gμil(t)+πμil(t)fμil(t).
 (7)   Do line search along the gradient, choose the right step size γil.
 (8)   Update service rates μil+1(t):=μil(t)-γilηfμil(t).
 (9)   Set l:=l+1.
 (10)  Until  sp(fμil+1(t)+Aμil+1(t)  gμil(t))<ϵ  or  μil+1(t)Γi(t).
 (11) end  for