Journals
Publish with us
Publishing partnerships
About us
Blog
Mathematical Problems in Engineering
Journal overview
For authors
For reviewers
For editors
Table of Contents
Special Issues
Mathematical Problems in Engineering
/
2010
/
Article
/
Tab 1
/
Research Article
Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface
Table 1
Original function
Transformed function
f
(
t
)
=
u
(
t
)
±
v
(
t
)
F
(
k
)
=
U
(
k
)
±
V
(
k
)
f
(
t
)
=
λ
u
(
t
)
F
(
k
)
=
λ
U
(
k
)
f
(
t
)
=
d
n
u
(
t
)
d
t
n
F
(
k
)
=
(
k
+
n
)
!
k
!
U
(
k
+
n
)
f
(
t
)
=
t
d
u
(
t
)
d
t
F
(
k
)
=
∑
r
=
0
k
δ
(
r
-
1
)
(
k
-
r
+
1
)
U
(
k
-
r
+
1
)
)
f
(
t
)
=
t
d
2
u
(
t
)
d
t
2
F
(
k
)
=
∑
r
=
0
k
δ
(
r
-
1
)
(
k
-
r
+
1
)
(
k
-
r
+
2
)
U
(
k
-
r
+
2
)
f
(
t
)
=
d
u
(
t
)
d
t
d
u
(
t
)
d
t
F
(
k
)
=
∑
r
=
0
k
(
r
+
1
)
(
k
-
r
+
1
)
U
(
r
+
1
)
U
(
k
-
r
+
1
)
f
(
t
)
=
d
2
u
(
t
)
d
t
2
d
2
u
(
t
)
d
t
2
F
(
k
)
=
∑
r
=
0
k
(
r
+
1
)
(
r
+
2
)
(
k
-
r
+
2
)
(
k
-
r
+
1
)
U
(
r
+
2
)
U
(
k
-
r
+
2
)
f
(
t
)
=
u
(
t
)
d
2
u
(
t
)
d
t
2
F
(
k
)
=
∑
r
=
0
k
(
k
-
r
+
2
)
(
k
-
r
+
1
)
U
(
r
)
U
(
k
-
r
+
2
)