Research Article

Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface

Table 1


Original functionTransformed function

f(t)=u(t)±v(t)F(k)=U(k)±V(k)
f(t)=λu(t)F(k)=λU(k)
f(t)=dnu(t)dtnF(k)=(k+n)!k!U(k+n)
f(t)=tdu(t)dtF(k)=r=0kδ(r-1)(k-r+1)U(k-r+1))
f(t)=td2u(t)dt2F(k)=r=0kδ(r-1)(k-r+1)(k-r+2)U(k-r+2)
f(t)=du(t)dtdu(t)dtF(k)=r=0k(r+1)(k-r+1)U(r+1)U(k-r+1)
f(t)=d2u(t)dt2d2u(t)dt2F(k)=r=0k(r+1)(r+2)(k-r+2)(k-r+1)U(r+2)U(k-r+2)
f(t)=u(t)d2u(t)dt2F(k)=r=0k(k-r+2)(k-r+1)U(r)U(k-r+2)