Research Article

C-N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term

Table 1

The error comparison in the sense of 𝑙 at various time step when 𝜐 = 𝛾 = 0 . 2 .

𝜏 = = 0 . 1 𝜏 = = 0 . 0 5 𝜏 = = 0 . 0 2 5
Scheme IScheme II Scheme IScheme II Scheme IScheme II

𝑢 𝑡 = 1 2 . 0 5 1 8 2 8 e 3 3 . 0 3 1 2 2 8 e 3 5 . 0 8 6 9 9 7 e 4 7 . 7 1 5 0 4 2 e 4 1 . 2 1 2 0 6 2 e 4 1 . 9 6 3 6 1 6 e 4
𝑡 = 2 3 . 6 5 8 8 6 1 e 3 4 . 4 4 4 1 6 1 e 3 9 . 0 6 2 5 9 8 e 4 1 . 1 3 0 5 4 5 e 3 2 . 1 5 9 8 2 6 e 4 2 . 8 9 1 3 0 8 e 4
𝑡 = 3 4 . 6 5 9 5 2 3 e 3 5 . 2 4 8 7 0 0 e 3 1 . 1 5 4 1 7 1 e 3 1 . 3 3 2 2 3 6 e 3 2 . 7 4 9 8 0 7 e 4 3 . 3 6 3 1 6 7 e 4
𝑡 = 4 5 . 2 3 0 4 6 3 e 3 5 . 8 1 7 1 7 1 e 3 1 . 2 9 5 6 8 1 e 3 1 . 4 7 6 3 2 6 e 3 3 . 0 8 7 0 0 2 e 4 3 . 7 3 6 6 0 9 e 4
𝑡 = 5 5 . 5 0 9 9 4 7 e 3 6 . 5 7 0 9 2 2 e 3 1 . 3 6 5 0 1 1 e 3 1 . 6 6 0 7 4 5 e 3 3 . 2 5 2 2 4 1 e 4 4 . 2 1 3 1 1 6 e 4

𝜌 𝑡 = 1 1 . 6 7 2 6 2 3 e 3 1 . 9 8 1 7 1 8 e 3 4 . 1 4 6 2 3 3 e 4 5 . 0 0 9 1 0 5 e 4 9 . 8 8 2 7 0 5 e 5 1 . 2 7 4 2 8 1 e 4
𝑡 = 2 2 . 7 7 5 2 4 7 e 3 3 . 2 3 1 0 8 7 e 3 6 . 8 8 0 9 6 9 e 4 8 . 1 1 0 3 5 3 e 4 1 . 6 4 0 1 2 8 e 4 2 . 0 7 4 0 9 1 e 4
𝑡 = 3 3 . 6 1 9 0 2 2 e 3 4 . 4 9 5 8 8 8 e 3 8 . 9 7 1 7 1 6 e 4 1 . 1 4 4 5 5 5 e 3 2 . 1 3 8 3 2 6 e 4 2 . 9 1 2 4 0 3 e 4
𝑡 = 4 4 . 1 5 0 3 8 7 e 3 5 . 1 6 9 2 5 7 e 3 1 . 0 2 8 9 6 2 e 3 1 . 3 1 4 3 3 4 e 3 2 . 4 5 2 4 9 5 e 4 3 . 3 2 9 7 0 2 e 4
𝑡 = 5 4 . 4 3 4 6 9 2 e 3 5 . 7 9 2 7 1 7 e 3 1 . 1 0 0 0 8 9 e 3 1 . 4 6 6 3 2 6 e 3 2 . 6 2 1 2 9 6 e 4 3 . 7 1 6 6 0 9 e 4