Research Article

C-N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term

Table 2

The error comparison in the sense of 𝑙 at various time step when 𝜐 = 𝛾 = 0 . 5 .

𝜏 = = 0 . 1 𝜏 = = 0 . 0 5 𝜏 = = 0 . 0 2 5
Scheme IScheme II Scheme IScheme II Scheme IScheme II

𝑢 𝑡 = 1 1 . 7 9 5 2 4 4 e 3 2 . 2 6 8 8 4 3 e 3 4 . 4 4 5 0 0 0 e 4 5 . 6 8 5 5 5 4 e 4 1 . 0 5 9 0 2 9 e 4 1 . 4 5 4 0 7 1 e 4
𝑡 = 2 2 . 5 4 4 7 8 3 e 3 3 . 1 0 2 4 9 4 e 3 6 . 2 9 8 4 8 4 e 4 7 . 9 2 5 5 0 0 e 4 1 . 5 0 0 0 3 3 e 4 2 . 0 3 2 7 8 8 e 4
𝑡 = 3 3 . 4 2 2 3 2 6 e 3 3 . 7 0 5 2 4 4 e 3 8 . 4 7 4 7 9 4 e 4 9 . 4 8 2 2 1 1 e 4 2 . 0 1 8 8 0 8 e 4 2 . 4 3 0 7 3 3 e 4
𝑡 = 4 3 . 7 7 9 3 8 9 e 3 4 . 2 0 7 4 4 7 e 3 9 . 3 5 5 4 7 9 e 4 1 . 0 7 9 0 8 2 e 3 2 . 2 2 3 9 5 4 e 4 2 . 7 9 9 1 0 7 e 4
𝑡 = 5 4 . 1 5 1 2 8 9 e 3 4 . 7 2 9 3 2 2 e 3 1 . 0 2 7 8 7 6 e 3 1 . 2 1 6 7 0 4 e 3 2 . 4 5 3 1 5 5 e 4 3 . 1 6 2 7 0 8 e 4

𝜌 𝑡 = 1 1 . 3 0 3 4 5 9 e 3 1 . 9 6 3 6 9 5 e 3 3 . 2 3 4 5 7 1 e 4 5 . 0 8 3 8 8 3 e 4 7 . 7 0 6 7 4 1 e 5 1 . 2 9 4 9 5 3 e 4
𝑡 = 2 1 . 8 6 8 9 3 3 e 3 2 . 9 2 8 0 2 3 e 3 4 . 6 3 3 3 8 0 e 4 7 . 5 0 6 2 4 0 e 4 1 . 1 0 4 0 6 1 e 4 1 . 9 0 7 7 9 5 e 4
𝑡 = 3 2 . 4 6 2 8 9 0 e 3 3 . 4 5 3 7 3 1 e 3 6 . 1 1 0 9 1 8 e 4 8 . 8 2 3 5 1 7 e 4 1 . 4 5 3 8 6 7 e 4 2 . 2 6 6 2 6 8 e 4
𝑡 = 4 3 . 0 1 6 8 5 6 e 3 4 . 1 6 9 3 9 0 e 3 7 . 5 1 8 8 3 9 e 4 1 . 0 6 6 3 0 8 e 3 1 . 8 1 3 3 3 3 e 4 2 . 7 2 1 3 7 9 e 4
𝑡 = 5 3 . 4 4 6 6 7 4 e 3 4 . 5 1 3 2 8 3 e 3 8 . 7 4 3 4 6 0 e 4 1 . 1 4 1 8 0 7 e 3 2 . 1 2 6 2 6 8 e 4 2 . 9 1 8 8 0 5 e 4