Research Article
Multiclass Boosting with Adaptive Group-Based kNN and Its Application in Text Categorization
Table 2
Recall comparison.
| Algorithms | Text type | Economics | Politics | Sports | Weather | Entertainment | Culture |
| AdaBoost | 0.852 | 0.857 | 0.849 | 0.863 | 0.859 | 0.861 | AdaBoost.M1 | 0.852 | 0.864 | 0.863 | 0.877 | 0.862 | 0.865 | AdaBoost.MR | 0.858 | 0.863 | 0.849 | 0.866 | 0.851 | 0.867 | AdaBoost.ECC | 0.851 | 0.844 | 0.845 | 0.850 | 0.846 | 0.849 | Naïve Bayes | 0.761 | 0.798 | 0.782 | 0.804 | 0.817 | 0.805 | SVM | 0.868 | 0.865 | 0.874 | 0.874 | 0.867 | 0.876 | Neural network | 0.834 | 0.809 | 0.823 | 0.811 | 0.825 | 0.807 | Decision tree | 0.815 | 0.798 | 0.784 | 0.819 | 0.799 | 0.813 | AGNN DIWC-1 | 0.897 | 0.888 | 0.890 | 0.913 | 0.885 | 0.905 | AGNN DIWC-2 | 0.909 | 0.914 | 0.914 | 0.922 | 0.891 | 0.908 | AGNN DIWC-3 | 0.921 | 0.917 | 0.919 | 0.923 | 0.911 | 0.916 |
|
|