Research Article
Networked Timetable Stability Improvement Based on a Bilevel Optimization Programming Model
Table 2
Computing results of rescheduled timetable stability.
| (a) Related computing results of |
| | Key nodes | Trains number through station | Nodes capacity | Load | Capacity index | Nodes degree | Degree index | Stations weight |
| | 1 | 44 | 66.0 | 0.6667 | 0.3099 | 2 | 0.1111 | 0.2245 | | 2 | 23 | 34.5 | 0.6667 | 0.1620 | 3 | 0.1667 | 0.1760 | | 3 | 21 | 31.5 | 0.6667 | 0.1479 | 3 | 0.1667 | 0.1607 | | 4 | 10 | 15.0 | 0.6667 | 0.0704 | 4 | 0.2222 | 0.1020 | | 5 | 24 | 36.0 | 0.6667 | 0.1690 | 3 | 0.1667 | 0.1837 | | 6 | 20 | 30.0 | 0.6667 | 0.1408 | 3 | 0.1667 | 0.1531 |
|
|
| (b) Related computing results of |
| | Section | Trains number through section | Sections capacity | Load | Capacity index | Sections weight |
| | 1-2 | 23 | 30.0 | 0.7667 | 0.1622 | 0.1622 | | 1–3 | 21 | 27.5 | 0.7636 | 0.1486 | 0.1486 | | 2–4 | 5 | 6.5 | 0.7692 | 0.0351 | 0.0351 | | 2–5 | 18 | 23.5 | 0.7660 | 0.1270 | 0.1270 | | 3-4 | 5 | 6.5 | 0.7692 | 0.0351 | 0.0351 | | 3–6 | 16 | 21.0 | 0.7619 | 0.1135 | 0.1135 | | 4-5 | 6 | 8.0 | 0.7500 | 0.0432 | 0.0432 | | 4–6 | 4 | 5.0 | 0.8000 | 0.0270 | 0.0270 | | 5–7 | 24 | 31.0 | 0.7742 | 0.1676 | 0.1676 | | 6-7 | 20 | 26.0 | 0.7692 | 0.1405 | 0.1405 |
|
|