Research Article

Online Regularized and Kernelized Extreme Learning Machines with Forgetting Mechanism

Table 1

RMSE comparison between the proposed ELMs and other ELMs on identification of process (20) with input (23).

5070100150200

FOS-ELM ( )0.34740.09670.07310.09750.0817
ReOS-ELM 0.0961
DR-ELM 0.06810.06830.07120.08330.0671
FORELM ( )0.08500.07080.06800.08160.0718

FOS-ELM0.90700.18080.13240.08210.0883
ReOS-ELM0.0804
DR-ELM0.05430.06700.07890.06350.0656
FORELM0.05780.06970.08330.06530.0600

FOS-ELM×××9.95410.4806
ReOS-ELM0.0529
DR-ELM0.03770.03510.03450.04250.0457
FORELM0.03440.03200.03240.04570.0456

FOS-ELM×××××
ReOS-ELM0.0359
DR-ELM0.02980.03060.03080.03910.0393
FORELM0.03120.02630.02880.04050.0378

FOS-ELM×××××
ReOS-ELM0.0351
DR-ELM0.02680.02700.02810.04170.0365
FORELM0.02700.02760.02840.03780.0330

FOS-ELM×××××
ReOS-ELM0.0344
DR-ELM0.02590.02840.02720.03630.0351
FORELM0.02630.02890.02740.03550.0325

FOS-ELM×××××
ReOS-ELM0.0296
DR-ELM0.02400.02550.02490.03620.0327
FORELM0.02310.02480.02560.03720.0310

FOS-ELM×××××
ReOS-ELM0.0292
DR-ELM0.02330.02530.02700.03740.0320
FORELM0.02230.02560.02520.04070.0318

FOS-ELM×××××
ReOS-ELM0.0298
DR-ELM0.02340.02630.02780.04180.0323
FORELM0.02320.02380.02590.03720.0310

FOKELM 0.02360.02510.02670.03860.0331

“—” represents nondefinition or inexistence in the case.
“×” represents nullification owing to the too large RMSE or MAPE.