Research Article

Frequency-Domain Assessment of Integration Schemes for Earthquake Engineering Problems

Table 3

Permanent slope displacements computed by Newmark sliding method for the strong ground motion Gilroy number 1 (Bedrock) and Gilroy number 2 (Soil), applying different integration formulae and several values of . The corresponding deviations (in percentage) with respect to the trapezoidal rule are also listed for comparison purposes.

(cm) Deviation (%) (cm) Deviation (%) (cm) Deviation (%)

Gilroy number 1 (Bedrock)
Trapezoidal 11.5954 3.7081 0.663
Simpson 11.597 0.0143 3.6869 0.6861 3.4829
Simpson 3-8 11.6022 0.0585 3.7256 0.4719 0.622
Newton-Cotes 11.3222 3.6338 0.466
Rectangle 11.6881 0.7998 3.7432 0.9445 0.6769 2.1014
Tick 11.5924 3.6832 0.6837 3.1203
Schuessler-Ibler 11.7432 1.2745 3.7292 0.5693 0.5402

Gilroy number 2 (Soil)
Trapezoidal 17.0186 2.8038 0.3117
Simpson 17.0514 0.1932 2.8074 0.126 0.312 0.0936
Simpson 3-8 17.0043 2.7929 0.301
Newton-Cotes 17.3194 1.768 2.7726 0.2968
Rectangle 17.0362 0.1038 2.812 0.2921 0.3142 0.8138
Tick 17.0496 0.1826 2.8063 0.089 0.3119 0.0596
Schuessler-Ibler 17.4455 2.5086 2.8077 0.1364 0.3119 0.0585