Research Article
A Two-Dimensional Genetic Algorithm and Its Application to Aircraft Scheduling Problem
Table 2
Effect of crossover and mutation rates for data set data_07091.
| GA parameters |
Objective function value in different generations | | | 1000 | 2000 | 3000 | 4000 | 5000 |
| 0.9 | 0.01 | 1340 | 400 | 280 | 200 | 200 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0.1 | 90 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 110 | 0 | 0 | 0 | 0 |
| 0.8 | 0.01 | 770 | 200 | 200 | 150 | 0 | 0.05 | 200 | 0 | 0 | 0 | 0 | 0.1 | 30 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 |
| 0.7 | 0.01 | 900 | 500 | 500 | 230 | 230 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 600 | 600 | 600 | 600 | 600 | 0.3 | 0 | 0 | 0 | 0 | 0 |
| 0.6 | 0.01 | 800 | 290 | 30 | 0 | 0 | 0.05 | 400 | 400 | 200 | 200 | 200 | 0.1 | 270 | 200 | 200 | 200 | 200 | 0.2 | 270 | 0 | 0 | 0 | 0 | 0.3 | 210 | 200 | 200 | 200 | 200 |
| 0.5 | 0.01 | 1750 | 1220 | 780 | 330 | 330 | 0.05 | 250 | 250 | 200 | 200 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 110 | 0 | 0 | 0 | 0 |
|
|