Research Article
A Two-Dimensional Genetic Algorithm and Its Application to Aircraft Scheduling Problem
Table 4
Effect of crossover and mutation rates for data set data_07092.
| GA parameters |
Objective function value in different generations | | | 1000 | 2000 | 3000 | 4000 | 5000 |
| 0.9 | 0.01 | 140 | 80 | 10 | 10 | 10 | 0.05 | 270 | 200 | 200 | 200 | 200 | 0.1 | 200 | 200 | 200 | 200 | 200 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 470 | 400 | 400 | 400 | 400 |
| 0.8 | 0.01 | 690 | 400 | 400 | 400 | 400 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0.1 | 200 | 200 | 200 | 200 | 200 | 0.2 | 210 | 210 | 200 | 200 | 200 | 0.3 | 0 | 0 | 0 | 0 | 0 |
| 0.7 | 0.01 | 690 | 0 | 0 | 0 | 0 | 0.05 | 290 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 70 | 70 | 70 | 70 | 70 | 0.3 | 80 | 80 | 80 | 80 | 80 |
| 0.6 | 0.01 | 1260 | 610 | 300 | 200 | 200 | 0.05 | 200 | 200 | 200 | 200 | 200 | 0.1 | 120 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 270 | 200 | 0 | 0 | 0 |
| 0.5 | 0.01 | 920 | 30 | 0 | 0 | 0 | 0.05 | 210 | 200 | 200 | 200 | 200 | 0.1 | 200 | 200 | 200 | 200 | 200 | 0.2 | 140 | 70 | 0 | 0 | 0 | 0.3 | 280 | 210 | 210 | 210 | 210 |
|
|