Research Article

An Improved Artificial Colony Algorithm Model for Forecasting Chinese Electricity Consumption and Analyzing Effect Mechanism

Table 4

The forecasting error of these models.

Prediction methodsYearTEC
(billion kW⋅h)
Predictions
(billion kW⋅h)
AEAPEMAEMAPE

The improved ABC model201041923.0041779.58143.420.342%388.950.928%
201146928.0046231.69696.311.484%
201249762.6449455.53307.110.617%
201353223.0052698.57524.430.985%
201455233.0055506.47273.470.495%

The quadratic regression mode201041923.0040563.411359.593.243%1576.543.761%
201146928.0044276.432651.575.650%
201249762.6448187.101575.543.166%
201353223.0052295.45927.551.743%
201455233.0056601.461368.462.478%

The ANN model201041923.0043212.851289.853.077%1335.663.186%
201146928.0045814.301113.702.373%
201249762.6450693.92931.281.871%
201353223.0054074.38851.381.600%
201455233.0057725.062492.064.512%

The GA model201041838.9041870.0531.150.074%659.231.576%
201146503.5446059.59443.960.955%
201249881.9149236.22645.691.294%
201353493.7752476.521017.251.902%
201456330.9255172.841158.082.056%

The PSO model201041923.0041870.0552.950.126%450.891.076%
201146928.0046059.59868.411.851%
201249762.6449236.22526.421.058%
201353223.0052476.52746.481.403%
201455233.0055172.8460.160.109%