Research Article

Simultaneous Generation of Optimum Pavement Clusters and Associated Performance Models

Table 4

Estimated model parameters using the proposed CLR approach.

Parameters  (2,279)  (1,959)  (2,169)  (2,094)  (1,883)  (1,936)  (2,317)
Coeff.Std. err.Coeff.Std. err.Coeff.Std. err.Coeff.Std. err.Coeff.Std. err.Coeff.Std. err.Coeff.Std. err.

intercept4.1450.3126.2420.3692.79100.3116.72800.3587.78100.39412.14000.4013.87300.331
age-0.0350.002-0.0400.003-0.03500.003-0.03270.003-0.04640.003-0.03920.004-0.04980.003
-0.006<0.001-0.004<0.001-0.0262<0.001-0.0028<0.001-0.0078<0.001-0.0053<0.001-0.0334<0.001
0.0002<0.0010.0205<0.0010.0190<0.001-0.0151<0.0010.0306<0.0010.0557<0.0010.0752<0.001
0.0066<0.0010.0182<0.001-0.0352<0.001-0.1079<0.001-0.1418<0.001-0.0131<0.0010.1060<0.001
precip-0.00370.008-0.01180.009-0.00370.008-0.02480.0090.00940.011-0.05180.012-0.02520.008
min_temp-0.0300.0090.01290.010-0.00920.0090.04970.010-0.03210.011-0.04470.0130.05320.009
max_temp0.0250.007-0.0300.0080.02490.007-0.05680.008-0.01240.009-0.05540.010-0.03110.007
wet_days0.0050.002-0.0100.0020.01150.0020.00310.002-0.00280.0020.00040.003-0.00610.002
freeze_-1.697<0.0011.513<0.001-0.2029<0.0011.8550<0.001-1.41000.001-13.79000.0014.2370<0.001
rut_depth-0.6320.115-1.0020.115-1.10600.095-0.56140.117-0.84080.119-0.39990.143-0.99000.099
lane=2-0.3710.029-0.1660.0270.01210.027-0.12160.028-0.55740.032-0.27450.0320.02580.026
lane3-0.3250.044-0.1950.046-0.17130.052-0.32150.045-0.39740.052-0.25110.0540.03910.046
nhs-0.4420.079-0.4070.1720.74540.138-0.28110.072-0.26390.150-0.43000.0851.43200.138
stp-0.8020.094-0.4870.1800.61210.153-0.34520.091-0.13460.131-0.33790.1041.13500.151
f_class=20.5210.1150.09400.165-0.93830.1360.41180.0910.70500.1400.94740.115-1.50900.149
f_class=30.3820.1000.33770.174-0.85510.1390.32700.0800.31070.1480.40250.101-1.37700.136
f_class=40.6190.1120.29640.181-0.69250.1510.29450.0940.01890.1370.54680.117-1.03300.146
f_class=50.6180.113-0.07030.182-0.64710.152-0.77630.098-0.62500.1430.30150.119-1.55900.148
f_class=60.4720.118-0.4190.188-1.21700.159-0.65660.108-0.79550.1450.05820.124-1.78800.154
f_class=70.5540.2040.4160.199-1.38400.173-0.13750.171NA0.1510.76140.144-1.36400.169
category=2-0.3060.070-0.04440.0510.07620.056-0.13000.045-0.60770.051-0.11750.0650.02460.035
category=3-0.3190.073-0.01560.056-0.04210.060-0.24570.051-0.60000.056-0.23170.069-0.00800.040
category=4-0.4680.077-0.2980.064-0.36650.065-0.15350.062-0.63310.066-0.50500.077-0.39820.052
category=5-0.4630.077-0.3560.064-0.71650.065-0.18990.063-0.84460.067-0.60010.076-0.41450.052

BIC136338238216496857271

Note: the quantity included in parentheses represents the total number of observations in a cluster.
variable value in thousands.
coefficient with p value > 0.05.
NA = not applicable.