Research Article

Simultaneous Generation of Optimum Pavement Clusters and Associated Performance Models

Table 5

Coefficients obtained using the existing state-of-the-art CLR approach.

Parameters  (1,229)  (1,365)  (1,413)  (1,091)  (1,423)  (1,412)  (1,430)  (1,321)  (1,272)  (1,360)  (1,321)
Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.Coeff.Std. Err.

intercept3.920.404.120.404.950.4414.430.607.410.453.700.364.610.403.800.477.950.486.500.427.540.43
age-0.04<0.01-0.04<0.01-0.05<0.01-0.04<0.01-0.05<0.01-0.04<0.01-0.04<0.01-0.05<0.01-0.05<0.01-0.04<0.01-0.03<0.01
adt-0.04<0.01-0.02<0.01-0.02<0.010.01<0.01-0.04<0.010.00<0.01-0.01<0.01-0.04<0.01-0.01<0.01-0.01<0.010.00<0.01
trucks0.110.020.030.020.040.020.130.020.050.020.01<0.01-0.03<0.01-0.010.020.05<0.010.010.020.03<0.01
elevation-0.02<0.010.18<0.01-0.05<0.01-0.05<0.01-0.22<0.010.01<0.01-0.11<0.01-0.17<0.010.18<0.01-0.05<0.010.01<0.01
precip-0.01<0.01-0.02<0.01-0.01<0.01-0.13<0.01-0.01<0.01-0.01<0.010.02<0.010.04<0.01-0.05<0.01-0.03<0.01-0.05<0.01
min_temp0.01<0.01-0.02<0.010.09<0.01-0.090.020.01<0.01-0.02<0.01-0.03<0.01-0.02<0.010.12<0.01-0.01<0.010.05<0.01
max_temp-0.01<0.010.01<0.01-0.06<0.01-0.05<0.01-0.03<0.010.02<0.010.02<0.010.03<0.01-0.12<0.01-0.01<0.01-0.06<0.01
wet_days0.01<0.01-0.01<0.01-0.01<0.010.02<0.010.01<0.010.01<0.01-0.01<0.010.01<0.01-0.02<0.010.01<0.010.01<0.01
freeze_thaw1.000.56-0.860.506.590.55-20.890.850.240.59-1.380.440.780.521.450.595.220.71-2.190.59-1.930.59
rut_depth-0.640.15-1.000.14-1.220.13-1.030.17-0.270.13-0.460.13-0.760.13-1.020.13-1.800.15-0.880.14-1.200.15
lane=20.020.04-0.160.03-0.350.04-0.100.040.030.04-0.060.03-0.260.03-0.220.03-0.530.04-0.280.04-0.260.04
lane30.220.06-0.030.06-0.430.06-0.310.060.310.08-0.430.06-0.480.050.010.07-0.330.06-0.270.06-0.390.06
nhs1.390.150.280.170.510.16-0.120.161.200.14-0.250.08-0.410.080.800.18-0.700.15-0.500.170.440.15
stp1.330.170.180.190.420.17-0.270.180.670.17-0.380.11-0.500.100.820.19-0.640.15-0.650.190.650.14
f_class=2-1.420.23-0.390.25-0.240.170.440.18-0.830.240.320.090.520.10-0.930.171.430.20-0.250.17-0.710.17
f_class=3-1.360.18-0.550.18-0.380.150.120.18-0.880.150.150.090.330.12-0.990.170.930.140.430.16-0.550.13
f_class=4-1.250.18-0.490.20-0.390.160.220.20-0.560.180.270.110.410.13-1.120.180.890.140.690.18-0.590.12
f_class=5-1.850.19-0.510.20-0.910.160.030.20-1.430.180.210.110.180.13-2.180.180.600.140.430.18-0.470.12
f_class=6-2.070.20-0.710.20-0.770.17-0.720.21-1.710.190.140.12-0.660.14-2.240.190.240.150.560.19-0.710.13
f_class=7NA-0.630.22-1.530.250.420.29-0.680.190.090.160.180.16-2.280.25NA0.720.25NA
category=20.020.090.070.06-0.360.050.220.10-0.270.070.060.05-0.200.09-0.070.06-0.660.06-0.130.05-0.140.07
category=30.020.100.010.07-0.430.060.140.11-0.170.08-0.050.06-0.290.10-0.080.06-0.760.07-0.200.06-0.460.08
category=4-0.240.11-0.410.08-0.690.070.020.12-0.220.09-0.130.06-0.420.10-0.150.07-1.010.08-0.740.07-0.680.09
category=5-0.380.11-0.330.07-0.800.07-0.070.12-0.180.09-0.080.06-0.380.10-0.180.07-1.150.08-1.290.07-1.140.09

BIC1259742055331422688103337233276

Note: the quantity included in the parenthesis represents the total number of observations in a cluster.
variable value in thousands.
coefficient with p value > 0.05.
NA = not applicable.