Research Article
A Simple Method of Residential Electricity Load Forecasting by Improved Bayesian Neural Networks
Table 11
Results on different datasets.
| Home number∖Methods | IBNN (BNN_16) | TSNN (TS_BNN, time delays = 25) | MSE | R | MAE | Time | MSE | R | MAE | Time |
| 11 | 2.47e-2 | 0.87 | 0.10 | 17.48 | 2.38e-2 | 0.89 | 0.10 | 476.87 | 13 | 3.43e-2 | 0.85 | 0.09 | 12.05 | 3.24e-2 | 0.88 | 0.10 | 350.22 | 16 | 2.86e-2 | 0.87 | 0.10 | 7.79 | 2.83e-2 | 0.88 | 0.10 | 477.66 | 22 | 7.76e-2 | 0.72 | 0.16 | 9.73 | 7.24e-2 | 0.75 | 0.16 | 480.80 | 25 | 8.60e-2 | 0.90 | 0.15 | 11.94 | 8.34e-2 | 0.89 | 0.15 | 264.94 | 28 | 2.32e-2 | 0.87 | 0.07 | 21.89 | 2.68e-2 | 0.85 | 0.09 | 199.21 | 31 | 4.30e-2 | 0.83 | 0.09 | 10.56 | 4.78e-2 | 0.86 | 0.11 | 207.40 | 34 | 4.03e-2 | 0.82 | 0.11 | 12.84 | 4.25e-2 | 0.84 | 0.12 | 482.75 | 37 | 2.43e-2 | 0.89 | 0.09 | 12.86 | 1.81e-2 | 0.91 | 0.09 | 330.83 | 40 | 1.11e-2 | 0.91 | 0.06 | 14.64 | 1.12e-2 | 0.91 | 0.06 | 199.69 | 44 | 1.98e-2 | 0.79 | 0.07 | 11.09 | 2.11e-2 | 0.84 | 0.08 | 263.15 | 47 | 2.34e-2 | 0.90 | 0.09 | 9.64 | 2.36e-2 | 0.89 | 0.09 | 143.94 | 50 | 4.67e-2 | 0.51 | 0.13 | 7.49 | 4.58e-2 | 0.54 | 0.13 | 222.25 | 55 | 4.63e-2 | 0.89 | 0.16 | 5.63 | 4.83e-2 | 0.88 | 0.16 | 475.61 | 58 | 7.52e-2 | 0.84 | 0.17 | 11.77 | 8.09e-2 | 0.83 | 0.19 | 315.73 |
|
|